
Transfer and Skip Hybrid Models for sEMG
Keystroke Decoding

Colton Rowe
University of California, Los Angeles

Samueli Master of Engineering
ECE 247A, Dr. Jonathan Kao

Los Angeles, CA 90095
coltonrowe@g.ucla.edu

Abstract

This is a comparative analysis of the character error rate (CER) performance1

differences between recurrent networks in the framework of Facebook’s Time-2

Depth Separable (TDS) Encodings [1]. The dataset used is the emg2qwerty dataset,3

which translates surface electromyography (sEMG) recordings into typed keys.4

The baseline Encoding + CNN model achieves a 22.15 testing CER after epoch5

41. I then test architectures which substitute the multilayer CNN for an RNN and6

LSTM. To overcome computation limits, these tests were scaled back: each model7

was trained for 10 epochs with additional reduced settings to be computed on the8

CPU. The CNN achieves a loss of 2.37, the RNN achieves a loss of 2.99 before9

the loss explodes, and the LSTM achieves a loss of 2.83, ranking CNN > LSTM10

> RNN. An additional model that combines a CNN and LSTM is trained for 3011

epochs and compared with the standard CNN, both on reduced settings. I then12

introduce a "Transfer Hybrid" model, which freezes the model parameters of a13

previously trained CNN, and trains a LSTM on its output. Neither of these hybrid14

architecture surpass the performance of the baseline CNN, but the transfer hybrid15

model shows more promise for future experiments. Lastly, I propose a skip hybrid16

model, which attempts to address the shortcomings of the transfer hybrid model.17

1 Introduction18

1.1 Background19

Accessible human-computer interfaces have the potential to be revolutionized with surface elec-20

tromyography (sEMG). Traditional computer-brain interfaces require a direct electrical connection21

with neurons, but sEMG provides a non-invasive alternative which could give amputees safe and22

independent access to computers. In the emg2querty dataset, sEMG is used to record electrical23

impulses in the forearms of participants while recording their keystrokes. The 2 x 16 electrical sensors24

on the participants forearms become 32 channels, which allows the convolutional layer to predict a25

character in this context window. Convolutional neural networks are typically used to process image26

data, where layers care about the relative distance between features in the input. Treating time as a27

spacial distance allows the convolutional layer to make accurate predictions on sequential data [1].28

More typically, recurrent architectures like RNNs and LSTMs are used to process time series data.29

We would hope that a recurrent network could store memories about it’s own prediction for the last30

keystroke, which could inform it’s prediction about the next keystroke. Vanilla RNNs do not tend31

to perform as well as other recurrent architectures because of vanishing and exploding gradients,32

which can cause the loss to become unstable. Long Short Term Memory Networks are more stable33

than vanilla RNNs because the activations pass through forget gates which selectively throw away34

unnecessary information [2]. LSTMs can be used to generate natural language that sounds somewhat35



sensible while following grammar rules. LSTMs don’t require a large amount of data to produce36

impressive results. These properties make LSTMs ideal for assisting in next-letter prediction for37

keystrokes. Today, transformers dominate language related tasks, but attention mechanisms are much38

more data intensive than LSTMs, so I decide against using them in this exploration.39

1.2 Methods Motivation40

Here, I would like to outline specifically why I chose to implement each model in the next section.41

1.2.1 Recurrent models42

Three models were implemented to investigate how recurrent architectures perform on the sEMG43

data. I chose to train a TDS + CNN, a TDS + RNN, and a TDS + LSTM. This gave me a starting44

point to compare the differences between the recurrent and convolutional networks, and led me to try45

hybrid approaches in an attempt to increase performance.46

1.2.2 Hybrid Model47

A hybrid model was trained by combining a TDS + CNN + LSTM. Because the LSTM was the48

highest performing recurrent model, I thought combining it with the established CNN model could49

lead to higher performance. My intuition was that the TDS + CNN could decode the information in50

the scrolling window, and the LSTM can add additional context about letter relationships to inform51

the model of the best character class. The hope is that the CNN predicts the class of the current token52

to the best of it’s ability, and the LSTM uses that prediction in tandem with it’s memory to refine and53

modify the prediction.54

1.2.3 Transfer Hybrid Model55

Finally, I train a "transfer hybrid" model. The intuition for this model comes from transfer learning:56

we train the CNN model to convergence, then add an LSTM to the last layer, freezing the previously57

trained layers. The reason I think transfer learning could increase performance is because in the58

original hybrid model, the CNN and LSTM need to train together, which adds unnecessary recurrent59

information into the CNN through the gradient of the LSTM. In the transfer hybrid model, the CNN is60

allowed to learn the data independently, and the LSTM uses the CNN’s prediction to adjust its output.61

Like the vanilla hybrid model, the hope is that the LSTM learns something about next-character62

prediction in the context of the previous TDS + CNN. Feeding the softmax into the LSTM has63

advantages over feeding in the raw character. For example, if the TDS + CNN model predicts that64

letter j has a probability of 30% of having been pressed and letter h has only a 20% chance of having65

been pressed, but the the last letter was a t, the LSTM could infer that the keystroke was really an h,66

not a j. Recurrent relationships like these could inform the model of the intended key press.67

2 Methods68

2.1 Dataset69

In the emg2querty dataset, surface electromyography records signals in the forearms of participants70

while they type on a keyboard. The 2 x 16 electrical sensors on the participants forearms become71

32 channels of data, capturing muscle movements which map to typed keys. The data is sampled at72

2kHz with a window of 8000 - about 4 seconds of recorded EMG signal.73

2.2 Baseline Model74

The baseline model is a TDS + CNN as described in the Facebook paper [1] and used in the original75

emg2querty Github [3]. This is trained with 384 MLP features, four block channels of size 24, and76

with a batch size of 32. The model was trained for 41 epochs on a T4 GPU. For all of the models in77

this report, the Adam optimizer was used with learning rate of 1e-3.78

2



2.3 Recurrent Architectures79

A TDS + CNN, a TDS + RNN, and a TDS + LSTM were each structured by substituting the80

convolutional layer in the baseline model with a recurrent layer. Each of these models were trained81

with 192 MLP features, four block channels of size 12, and a batch size of 8 over 8 epochs. The82

reduction in parameter count, batch size, and epochs allowed the models to be trained on a CPU.83

2.4 Hybrid model84

A hybrid model was structured by combining a TDS + CNN with an LSTM, with 192 MLP features,85

four block channels of size 12, and a batch size of 8 over 30 epochs. It was compared to a baseline TDS86

+ CNN structured the same way. Specifically, the hybrid model was structured as a LogSpectrogram -87

MLP - CNN - Affine - LSTM - Affine - Softmax.88

2.5 Transfer Hybrid model89

The Transfer Hybrid was created by reloading the TDS + CNN into a local variable, freezing each90

parameter in this model, then feeding the output into a sequence of Affine - LSTM - Affine - Softmax.91

The TDS + CNN separately continued training to compare with. Again, these models were trained92

with 192 MLP features, four block channels of size 12, and a batch size of 8 over 30 epochs, totaling93

58 epochs for each model (a checkpoint at epoch 28 was used for the frozen CNN). This choice was94

because the baseline TDS + CNN model with reduced settings outperformed the baseline with higher95

settings.96

3 Results97

Model BatSz ChnSz MLPSz Epchs Loss Test CER
Baseline CNN 32 24 384 42 0.765 22.15

CNN 8 12 192 9 2.37 >=100
RNN 8 12 192 9 2.99 >=100

LSTM 8 12 192 9 2.83 >=100
CNN Long 8 12 192 30 0.665 21.82

Hybrid 8 12 192 30 0.815 25.99
Extended CNN Long 8 12 192 30 0.392 21.59

Transfer Hybrid 8 12 192 30 0.611 22.54
Table 1: Model Specifications and Tabular Results

3.1 Baseline Model98

Figure 1: Loss by Epoch for Baseline CNN Model, 42 epochs.

3



199

The Baseline CNN with high settings trained for 42 epochs on a Colab T4 GPU and acheived a test100

CER of 22.15, with a loss of 0.76. Of the tested models, the CNNs performed the best across different101

parameters and trained as expected.102

3.2 Recurrent Models103

Figure 2: Loss by Epoch for CNN, RNN, and LSTM with reduced settings, 9 epochs.

The recurrent models were trained on reduced parameters with 192 MLP features, four block channels104

of size 12, and with a batch size of 8. The models were trained for 42 epochs on a Colab CPU. The105

exact CER couldn’t be recorded for all of these models, but it’s likely that the CER did not get below106

100 because of the reduced amount of epochs. The structure of the RNN and LSTM models replaced107

the CNN layer in the original model with an RNN and LSTM layer respectively.108

Comparing the reduced parameter models, the RNN did the worst, with a final loss of 2.99. Not109

shown in the diagram, the loss for the RNN was NaN on Epoch 9, likely due to a exploding gradient110

which would quickly increase the size of the parameters in the model.111

The LSTM did better than the vanilla RNN, scoring a final loss of 2.83. It’s expected that the LSTM112

should outperformed the RNN because the LSTM mitigates the problem of exploding gradients, and113

can handle long-range dependencies better than the Vanilla RNN.114

The CNN performed the best, with a final loss of 2.37. CNNs are proven to be supreme in handling115

spacial data, so treating time as a spacial dimension proves convolutional layers to be extremely116

effective. A CNN is limited by its context window, which would suggest that it could useful as a117

feature-extractor for long-term dependencies introduced by an LSTM.118

3.3 Hybrid Model119

The hybrid CNN + LSTM model under performs the baseline, converging slower and reaching a120

final loss of 0.815 compared to the CNN’s loss of 0.665. The CER of the hybrid model also under121

performs the CNN, with a CER of 25.99 compared to the CNN’s CER of 21.82.122

3.4 Transfer Hybrid Model123

The transfer hybrid model under performs the CNN + extended training with a final loss of 0.611124

compared to the CNN’s loss of 0.392. The CER of the transfer hybrid model also underperforms the125

extended CNN, with a CER of 21.59 compared to the CNN’s CER of 22.54.126

1The loss in Epoch 0 for each model was over 100, so Epoch 0 was omitted to make the graphs more legible.

4



Figure 3: Loss by Epoch for CNN and the CNN + LSTM, 30 epochs.

Figure 4: Loss by Epoch for the transfer hybrid model and baseline CNN with continued training.

4 Discussion127

4.1 Highest Performing Model: Baseline CNN128

Of the tested models, the baseline CNN consistently performed the best. I believe this is because129

it adds just enough complexity and information to the model without adding unnecessary bloat. I130

think that given more epochs, the CNN + LSTM could have outperformed the baseline CNN as the131

recurrence becomes more important in prediction, but this would likely take many more epochs. It’s132

interesting that the reduced setting model outperformed the baseline - perhaps at lower epochs a133

simpler model is preferred, or that that more stochasticity improves performance.134

4.2 Recurrent models135

The vanilla RNN performed the worst in the recurrence comparison test, which was expected because136

of the vanishing and exploding gradient problems common in RNNs. The loss of the vanilla RNN137

exploded at only 9 epochs, which shows the importance of the forget gates in the LSTM. In the future,138

it would be interesting to compare additional architectures such as a GRU to the LSTM, because in139

fewer epochs the GRU would be expected to converge faster.140

4.3 Transfer Hybrid Model141

The fact that the transfer hybrid model has lower loss than it’s input could suggest that it’s learning142

something about next-character prediction in the context of the previous TDS + CNN. However, the143

5



best CER it achieved did not beat out the CER of it’s input model. The transfer hybrid model also does144

not beat out the baseline CNN when total trained epochs are compared. I believe two factors prevent145

this model from beating the baseline. The first is that the Transfer Hybrid model needs to spend146

time learning the basics: that the softmax probabilities from the CNN have predictive power for the147

output. The transfer hybrid model has a breakthrough between 8 and 10 epochs where the loss rapidly148

decreases and the model learns the basics. The second problem with this model is that the frozen149

CNN model can hinder the predictive capabilities of the LSTM. To be fully effective, the input to the150

LSTM should be trained until complete convergence. Without a converged model, we can’t hope151

for the LSTM to add additional sequential context to the prediction of a keystroke that outperforms152

the CNN simply continuing to improve. The frozen CNN caps the maximum performance that the153

transfer hybrid model can achieve.154

4.4 Future Investigation: Proposed Architectures for a Skip Hybrid Model155

The transfer hybrid model has the problems of the CNN not having fully converged and needing to156

relearn the ’basics’ of the CNN’s prediction (the large drop off in the loss). To be fully effective,157

the input to the LSTM in the transfer hybrid model should be independently good at predicting a158

keystroke. My original motivation behind the transfer hybrid model was to have the CNN train159

independent of the LSTM, because the CNN shouldn’t care too much about the gradient of the160

recurrent layer, it should care mostly about making the best possible prediction given the information161

from the encoder. I believe is why the baseline CNN trains better than the Vanilla CNN + LSTM162

Hybrid: because the hybrid model has the weights in the CNN updated based on the recurrence163

in the network, which the CNN shouldn’t care about. A "skip hybrid" model could pass the loss164

around the recurrent layer into the CNN directly, which would address the potential downside of the165

recurrent information updating the CNN. This is similar to the idea of a gradient highway as used in166

architectures like RESNet. An architecture like this would subvert the disadvantages of the transfer167

hybrid and vanilla hybrid models, while adding valuable recurrent information to the output of the168

baseline model. In Figure 5, I outline two possible architectures for a skip-hybrid model. Notably,169

both architectures sever the backward pass of the gradient from the LSTM block to the TDS + CNN170

block.171

Input

TDS + CNN

LSTM

L L*

Input

TDS + CNN

LSTM

L (SUM)

Figure 5: Proposed Architectures for a skip hybrid model. The dotted lines represent the flow of
gradients backwards through the network and the solid lines represent the forward pass.

6



References172

[1] Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert. Sequence-to-sequence speech173

recognition with time-depth separable convolutions. 2019.174

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,175

9(8):1735–1780, November 1997.176

[3] Viswanath Sivakumar, Jeffrey Seely, Alan Du, Sean R Bittner, Adam Berenzweig, Anuoluwapo177

Bolarinwa, Alexandre Gramfort, and Michael I Mandel. emg2qwerty: A large dataset with178

baselines for touch typing using surface electromyography, 2024.179

7


	Introduction
	Background
	Methods Motivation
	Recurrent models
	Hybrid Model
	Transfer Hybrid Model


	Methods
	Dataset
	Baseline Model
	Recurrent Architectures
	Hybrid model
	Transfer Hybrid model

	Results
	Baseline Model
	Recurrent Models
	Hybrid Model
	Transfer Hybrid Model

	Discussion
	Highest Performing Model: Baseline CNN
	Recurrent models
	Transfer Hybrid Model
	Future Investigation: Proposed Architectures for a Skip Hybrid Model


